skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taylor, Patrick J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. (Bi,Sb)2(Te,Se)3 tetradymite materials are among the most efficient for thermoelectric energy conversion, and most robust for topological insulator spintronic technologies, but should possess rather disparate doping properties to be useful for either technology. In this work, we report results on the molecular beam epitaxy growth of p-type (Bi0.43Sb0.57)2Te3 and n-type Bi2(Te0.95Se0.05)3 that can contribute to both technology bases, but are especially useful for topological insulators where low bulk doping is critical for devices to leverage the Dirac-like topological surface states. Comprehensive temperature, field and angular dependent magnetotransport measurements have attested to the superior quality of these ternary tetradymite films, displaying low carrier density on the order of 1018 cm–3 and a record high mobility exceeding 104 cm2 V–1 s–1 at 2 K. The remarkable manifestation of strong Shubnikov–de Haas (SdH) quantum oscillation under 9 T at liquid helium temperatures, as well as the analyses therein, has allowed direct experimental investigation of the tetradymite electronic structure with optimized ternary alloying ratio. Our effort substantiates tetradymites as a critical platform for miniaturized thermoelectric cooling and power generation in wearable consumer electronics, as well as for futuristic topological spintronics with unprecedented magnetoelectric functionalities. 
    more » « less
  2. Polar metals are challenging to identify spectroscopically because the fingerprints of electric polarization are often obscured by the presence of screening charges. Here, we unravel unambiguous signatures of a distortive polar order buried in the Fermi sea by probing the nonlinear optical response of materials driven by tailored terahertz fields. We apply this strategy to investigate the topological crystalline insulator Pb1−xSnxTe, tracking its soft phonon mode in the time domain and observing the occurrence of inversion symmetry breaking as a function of temperature. By combining measurements across the material’s phase diagram with ab initio calculations, we demonstrate the generality of our approach. These results highlight the potential of terahertz driving fields to reveal polar orders coexisting with itinerant electrons, thus opening additional avenues for material discovery. 
    more » « less
  3. Abstract Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr 2 Te 3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional Cr 2 Te 3 epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry. This Berry phase effect further introduces hump-shaped Hall peaks in pristine Cr 2 Te 3 near the coercive field during the magnetization switching process, owing to the presence of strain-modulated magnetic layers/domains. The versatile interface tunability of Berry curvature in Cr 2 Te 3 thin films offers new opportunities for topological electronics. 
    more » « less
  4. null (Ed.)